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1. Introduction

It is well known that the A-topological twist of a d = 2, N = 2 SUSY theory provides a

quick route towards the computation of correlators of chiral observables. These correlators

are physically interesting because while they probe the IR structure of the theory, the

topological twist renders them computable in terms of UV variables. When specialized

to N = 2 sigma models with target-space M , these topological correlators compute genus

zero Gromov-Witten invariants of M .

The models of most interest to physicists and mathematicians alike are those where M

is a Calabi-Yau three-fold. These theories flow to a non-trivial superconformal field theory
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which may be used for string compactification, and the corresponding manifolds possess

a rich enumerative structure. It is often the case that computations in these conformal

theories may be related to computations in related gapped models. For example, correlators

in the quintic three-fold in P
4 may be determined in terms of correlators of the P

4 sigma

model. A physical realization of this relation was given in [1] by using the gauged linear

sigma model (GLSM) introduced in [2].

The A-twisted GLSM is not only useful in relating the conformal and gapped theories,

but it also provides a simpler way to solve the gapped models. For example, even in the

“simple” case of P
4 the computation in the non-linear sigma model description requires

a careful compactification of the moduli space of world-sheet instantons. In the linear

model, the corresponding computations involve sums of gauge instantons with compact

and toric moduli spaces. Thus, the instanton sums, and hence correlators, are computable

by combinatoric techniques.

In the case of compact and toric GLSMs, there is an additional simplification: one may

reduce the instanton sums to simpler computations in Landau-Ginzburg theories. This may

be done by carrying out an abelian duality as in [3], or by working on the Coulomb branch

of the GLSM [4]. The former requires a careful analysis of the map to dual variables and

the associated Jacobian factors in the path integral measure, while the latter is stated in

terms of the original fields and parameters of the GLSM.

Much of the structure just described does not require (2, 2) supersymmetry. In partic-

ular, in a large class of models (0, 2) preserving deformations away from the (2, 2) locus are

unobstructed [5 – 8]. While these deformations deform the (2, 2) chiral ring structure, they

do not destroy it [9 – 11]. Once the theory is deformed from the (2, 2) locus, it no longer

admits a topological twist. However, under favorable circumstances, it is still possible to

perform a half-twist [12]. Although no longer topological, the half-twisted theory is still

sufficiently simple to render correlators of local chiral operators readily computable [13].

The GLSM continues to be of great service even off the (2, 2) locus. First, as already

observed in [2], the linear model provides a simple presentation of the (0, 2) deformations.

On the (2, 2) locus the left-moving fermions couple to the tangent bundle of the variety,

and the GLSM Lagrangian neatly separates the deformations of the tangent bundle of the

ambient toric variety from deformations associated to the choice of hypersurface/complete

intersection. Second, by working with the GLSM a (0, 2) generalization of the abelian

duality of Hori and Vafa was derived in [9]. Finally, the structure of the gauge-instanton

moduli spaces is still simple enough that direct computations of correlators are possible [14,

15].

In this paper we will compute genus zero correlators of chiral observables in (0, 2)-

deformed compact and toric GLSMs by working on the Coulomb branch of the theory. Our

method yields simple algebraic expressions for the amplitudes and leads to formulas for the

deformed quantum cohomology rings. The derivation is a straight-forward generalization of

(2, 2) Coulomb branch techniques and uses some recent results on correlators in half-twisted

(0, 2) Landau-Ginzburg theories.

The linear model computations are sure to play an important role in physics and

mathematics. We expect the explicit form of these correlators to be useful in generalizing
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mirror symmetry, special geometry, and Gromov-Witten invariants. It is likely that these

amplitudes will allow us to compute Yukawa couplings in a large class of (0, 2) heterotic

compactifications.

The rest of the paper is organized as follows. We describe the (0, 2)-deformed compact

and toric GLSMs in section 2. In section 3, we compute the effective potential describing

the Coulomb vacua, and we use it to arrive at a general formula for half-twisted correlators

in section 4. We present two massive examples in section 6 and a compact conformal

example in section 7. We conclude in section 8. The appendix contains an example of a

simple Maple code to compute correlators in the theory studied in [9, 14, 15].

2. A brief review of (0, 2) linear models

In this section we review the Lagrangian of (0, 2) deformations of a (2, 2) linear model in

standard (0, 2) superspace notation [2]. As this is well known material, we will not present

the component expansions of the superfields.

2.1 The (2, 2) theory

We will denote the (0, 2) superspace derivatives by D+,D+. The (2, 2) linear model is

an abelian gauge theory with matter multiplets (Φi,Γi), i = 1, . . . , n coupled to vector

multiplets Va,± with integral charges Qa
i , a = 1, . . . , n− d. In addition, the theory contains

n−d neutral multiplets Σa. The Φi and Σa are chiral bosonic multiplets satisfying D+Φi =

0, while the Γi are fermionic multiplets with D+Γi =
√

2Ei(Φ,Σ). The gauge field-strengths

corresponding to the Va,± live in chiral fermionic multiplets Υa. With this field content,

the Lagrangian takes the form S = Skin + SF-I + SJ , with

Skin =

∫
d2yd2θ

{
− 1

8e2
0

ΥaΥa −
i

2e2
0

Σa∂−Σa −
i

2
Φ

i
(∂− + iQa

i Va,−)Φi − 1

2
Γ

i
Γi

}
,

SF-I =
1

8πi

∫
d2ydθ+Υa log(qa)|θ+

=0
+ h.c.,

SJ =

∫
d2ydθ+ΓiJi(Φ)|

θ
+

=0
+ h.c.. (2.1)

The qa = e−2πra+iθa parametrize the Fayet-Iliopulos terms (the ra) and the θ-angles of

the gauge theory, while the Ji(Φ
i) are polynomials with charges −Qa

i . The action is (2, 2)

supersymmetric when Ji = ∂W/∂Φi for some gauge-invariant superpotential W , and

Ei = i
√

2ΣaQ
a
i Φ

i. (2.2)

More generally, the theory has (0, 2) supersymmetry as long as
∑

i EiJi = 0. In what

follows, we will mostly consider theories with Ji = 0. We will refer to such GLSMs as toric,

because for generic values of the ra the classical bosonic moduli space is a toric variety. We

may always choose a basis for the gauge charges so that when ra ≫ 0 for all a the classical

moduli space is a smooth toric variety X of dimension d, and at low energies the GLSM is

well-described by a non-linear sigma model with target-space X. When X is compact, we

will say the corresponding GLSM is compact.1

1The reader will find a more precise discussion of this terminology in [4].
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2.2 (0, 2) deformations

We now wish to consider (0, 2) deformations of compact, toric (2, 2) GLSMs. These defor-

mations are obtained by taking more general forms of the Ei(Σ,Φi). In this paper we will

consider Ei that remain linear in the Σa and Φi:

Ei(Σ,Φ) = i
√

2Σa (Aa)i
j Φj, (2.3)

where Aai
j is an array of n2(n − d) complex parameters.2

The Aai
j are constrained by gauge invariance. Since the Γi and Φi have identical gauge

charges, the A may only mix fields that have identical gauge charges for all gauge groups.

We will keep track of this by partitioning the (Φi,Γi) into sets with identical charges:

{Φi, i = 1, . . . n} → ∪α{ΦIα

(α), Iα = 1, . . . , nα}, (2.4)

with
∑

α nα = n, and Qa
Iα

= Qa
Jα

= Qa
(α) for all a, α and Iα, Jα. We then have

EIα

(α) = i
√

2
n−d∑

a=1

Σa

[
Aa

(α)

]Iα

Jα

ΦJα

(α). (2.5)

Not all parameters in the A(α) correspond to deformations of the theory. As we will see

below, a number of these may be absorbed into field re-definitions. In what follows, we

will suppress the Iα, Jα indices whenever it is unlikely to cause confusion, and we will find

it useful to work with the nα × nα matrices

M(α)(Σ) =
n−d∑

a=1

ΣaA
a
(α), (2.6)

as well as vectors

Φ(α) = t(Φ1
(α), . . . ,Φ

nα

(α)). (2.7)

The bosonic potential that follows from the action takes the form

U = 2
∑

α

φ†
(α)M

†
(α)M(α)φ(α) +

e2
0

2

n−d∑

a=1

(
∑

α

Qa
(α)φ

†
(α)φ(α) − ra

)2

. (2.8)

3. The effective potential on the Coulomb branch

Consider the classical parameter space of a compact, toric GLSM described above. Ignoring

the θ-angles, this is just the space R
n−d corresponding to the n − d Fayet-Iliopulos terms

ra. Let Kc ⊂ R
n−d be the cone generated by the n vectors Qi ∈ R

n−d:

Kc = {ra =
∑

i

Qa
i ξ

i | ξ ∈ R
n
≥0}. (3.1)

2There are good reasons for restricting to this form of the Ei. Terms of higher order in the Σa will

typically lead to additional vacua in the geometric phase, while terms of higher order in the Φi will not

affect correlators as long as large generic Σ VeVs give masses to all the matter multiplets.
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When the ra ∈ Kc, and the parameters in the matrices M(α) are generic, the σa fields

are massive, and the classical moduli space of the GLSM is a toric variety of dimension

d. In general, Kc consists of a number of subcones corresponding to various geometric

“phases” of the GLSM. When ra 6∈ Kc, and the M(α) are generic, there are no classical

supersymmetric vacua. Nevertheless, supersymmetry is unbroken for parameters outside

of Kc.
3 In the case of (2, 2) models [2, 1], the supersymmetric ground states in this region

of parameter space are massive Coulomb vacua. These are charcterized by large σa VeVs,

which give large masses to the matter multiplets (Φi,Γi). The dynamics of the (Σ,Υ) fields

are governed by an effective twisted superpotential W̃ (Σ), which in (0, 2) language takes

the form

Leff =

∫
dθ+ Υa

∂W̃

∂Σa

∣∣∣∣∣
θ
+

=0

+ h.c. . (3.2)

For generic values of the parameters, this interaction gives masses to all (Σa,Υa) multiplets.

This potential is one-loop exact, as may be seen by ’t Hooft anomaly matching, and it is

self-consistent4 when the ra are deep in the “non-geometric” phase.

This result is easily generalized off the (2, 2) locus. Provided that the M(α) are chosen

so that non-zero σa VeVs give masses to all the matter fields (this will be true for small

deformations off the (2, 2) locus), the one-loop shift in the D-term tadpole is given by

δ〈− 1

e2
0

Da〉 =
∑

α

Q(α)
a

nα∑

Iα=1

∫
d2k

(2π)2

{
1

k2 + 2m2
(α)Iα

− 1

k2 + 2µ2

}
. (3.3)

Here the m2
(α)Iα

are the positive eigenvalues of the mass matrix M †
(α)M(α), and µ is a sub-

traction point whose choice may be absorbed into a renormalization of the Fayet-Iliopulos

parameters ra.

Carrying out the integral, we find a shift that may be interpreted as a (0, 2) potential

Leff =

∫
dθ+

n−d∑

a=1

ΥaJ̃a(Σ)|
θ
+

=0
+ h.c., (3.4)

with

J̃a = − 1

8πi
log

[
∏

α

(
det M(α)

µnα

)Qa
(α)

/qa(µ)

]
. (3.5)

Just as on the (2, 2) locus, this potential is 1-loop exact. The massive Coulomb vacua are

common zeroes of J̃a(σ) = 0, i.e. the σa satisfying

∏

α

(
detM(α)(σ)

µnα

)Qa
(α)

= qa(µ). (3.6)

It is easy to see that on the (2, 2) locus the J̃a derived above follows from the effective

twisted superpotential of [2, 1].

3For example, considerations of topological invariants such as the Witten index, suggest that the theory

should possess SUSY vacua for all ra.
4In other words, it predicts large σa VeVs and thus large masses for the (Φi, Γi) multiplets.
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∗ θ+ Φi Γi Σa Υa

U(1)R 1 0 0 1 1

U(1)L 0 0 −1 −1 0

Table 1: Left- and right-moving R-symmetry charges for GLSM matter content.

4. Correlators in the half-twisted model

A toric GLSM on the (2, 2) locus possesses two classical U(1) symmetries — the left- and

right-moving R-symmetries, which act with charges given in table 1.

The vectorial combination of the corresponding currents, JV = JR + JL is non-

anomalous and may be used to twist the theory [12, 2]. This is the standard A-twist

of the linear model — a topological field theory. This theory is endowed with a nilpotent

fermionic symmetry generated by BRST-like operator QA. The (local) observables of the

theory are local, gauge-invariant operators in the QA cohomology. In the linear model

these are given by the σa(x). The A-model correlators are just the genus zero amplitudes

〈σa1(x1) · · · σak
(xk)〉.

The conservation of the current JV is preserved by (0, 2) deformations of a toric GLSM,

and hence it may still be used to twist the theory [12]. The resulting half-twisted theory,

while no longer topological, is also endowed with a BRST-like operator, QT . Unlike the

cohomology of QA, the cohomology of QT is in general infinite-dimensional. Nevertheless,

it has a meaningful truncation to a finite-dimensional “zero-energy” sub-space, which on

the (2, 2) locus matches the cohomology of QA [11]. Thus, even in the half-twisted model

it is interesting to compute the correlators of the σa(x).

In the remainder of this section we will argue that in a compact toric half-twisted

linear model these amplitudes are given by

〈σa1(x1) · · · σak
(xk)〉 =

∑

σ| eJ(σ)=0

σa1 · · · σak

[
det
a,b

(J̃a,b)
∏

α

det M(α)

]−1

, (4.1)

with M(α) defined in eq. (2.6), and the J̃a given in eq. (3.5). The result follows from a

combination of observations on correlators in massive half-twisted Landau-Ginzburg theo-

ries [13] and A-model computations on the Coulomb branch on the (2, 2) locus [4].

The starting point for the argument is the observation that a constant rescaling of

the world-sheet metric is a QT -exact deformation of the action. Since QT -exact operators

decouple from QT -closed operators, the amplitudes are independent of such a rescaling. In

the limit of a large world-sheet, it is clear that the correlators in these massive theories are

independent of the positions xk and may be computed exactly by a semi-classical expansion.

In addition, just as on the (2, 2) locus, we expect5 the correlators to be meromorphic

functions of the linear model parameters, so that the result of a semi-classical expansion

in any phase of the linear model will be easy to continue is to any other phase. While

5Our findings will confirm this expectation.
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the answers obtained in the various phases are simply related, the degree of computational

complexity changes significantly depending on which phase is used.

4.1 Computations in a geometric phase

In the geometric phases, i.e. when the ra are chosen to lie in Kc, the relevant semi-classical

expansion is in terms of the gauge instantons of the linear model. On general grounds, we

expect the correlators to be of the form

〈σa1(x1) · · · σak
(xk)〉 =

∑

N

cN (A)qN , (4.2)

where N is a multi-index N1, . . . , Nn−d labelling elements of H2(M, Z), and the cN (A) are

coefficients that depend on the (0, 2) deformation parameters. This may be thought of as

a (0, 2) generalization of Gromov-Witten theory [14]. These sums have been explored in

great detail on the (2, 2) locus [16, 17]. More recently, the cN (A) were computed in a (0, 2)

deformed linear model for P
1 ×P

1 in [14, 15]. The computation off the (2, 2) locus is much

more involved, but despite the complexity that arises in the intermediate steps, the final

results are elegant and compact expressions for the correlators.

4.2 Correlators in the non-geometric phase

In (2, 2) models the computations in the non-geometric phase, i.e. when the ra 6∈ Kc, are

considerably simpler than the geometric phase instanton sums. It was shown in [4] that

the correlators take the form

〈σa1(x1) · · · σak
(xk)〉 =

∑

σ|dfW (σ)=0

σa1 · · · σak

[
detHess W̃ (σ)

∏

i

(Qb
iσb)

]−1

, (4.3)

where W̃ is the one-loop twisted effective superpotential. There is a simple way to un-

derstand this formula. In the non-geometric phase the semi-classical field configurations

are given by φi = 0 and σa fixed to the critical points of W̃ (σ). Expanding the action in

fluctuations about one of the critical points, we find that the integration over the Σa,Υa

fields leads to the usual Landau-Ginzburg contribution of detHess W̃−1 [18]. The integra-

tion over the zero modes of the (Φi,Γi) multiplets produces an additional contribution of∏
i(Q

b
iσb)

−1.

In contrast to the geometric phase analysis, the computation in the non-geometric

phase is not much more involved off the (2, 2) locus. The semi-classical field configurations

are given by φi = 0 and σa fixed to the common zeroes of the J̃a of eq. (3.5). The

expansion in fluctuations about these configurations is easily carried out. The fluctuations

of the (Υa,Σa) multiplets lead to the det J̃−1 in the measure, while the zero modes of the

(Φi,Γi) multiplets lead to the additional factor of
∏

α detM−1
(α). The former contribution

is familiar from (0, 2) Landau-Ginzburg theories analyzed in [13]. The latter arises from

the σ-dependent mass term for the φ(α) in eq. (2.8) and its supersymmetric completion.

Combining these contributions and summing over the common zeroes of the J̃a leads to

the expression advertised in eq. (4.1).
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5. Remarks on the correlators

We will now make several general remarks on the half-twisted correlators. First, let us

dispose of the mass scale µ. In the untwisted theory, this RG scale describes the running of

the parameters qa(µ). In the half-twisted theory there is no longer any meaningful running,

and as we restrict computations to zero energy correlators, µ is just a length-scale. In what

follows, we will work in units of µ. Second, we will not attach a particular meaning to an

over-all normalization constant of the correlators, so will not keep track of constant factors

like the (8πi)−1 in the J̃a.

5.1 (0, 2) deformations of quantum cohomology

It is easy to see that the correlators satisfy the relations

〈O
∏

α|Qa
(α)

>0

detM
Qa

(α)

(α) 〉 = qa〈O
∏

α|Qa
(α)

<0

detM
−Qa

(α)

(α) 〉, for all O and a. (5.1)

These relations are the (0, 2) deformed version of the usual quantum cohomology of the

linear model. They were discussed in specific examples in [9, 14].

These are powerful constraints on the correlators, which often determine most of the

correlators in terms of a small finite subset of amplitudes. When interpreted in terms of

computations in a smooth geometric phase these relations are a quantum deformation of

the usual cohomology ring of the toric variety. We may always choose a basis of charges

such that the smooth geometric phase corresponds to sending all the qa → 0. We see that

in that limit the relations reduce to a (0, 2)-deformation of the Stanley-Reisner relations.

5.2 The M(α) and bundle deformations

Another simple consequence of eq. (4.1) is that our results are invariant under the trans-

formations

M(α) → U−1
(α)M(α)U(α), U ∈ GL(nα, C). (5.2)

This suggests that not all parameters in the M(α) correspond to genuine deformations of

the theory. This is not a surprise: by working in a geometric phase, it is easy to see that

the Ei overparameterize the deformations of the tangent bundle of the toric variety [15].

This over-parametrization is easily quantified in the linear model. Recall that the Ei

enter the theory via the relation

D+Γi = Ei, (5.3)

which we may equivalently write as

D+Γ(α) = M(α)Φ(α). (5.4)

Thus, a similarity transformation M(α) → U−1
(α)M(α)U(α) may be absorbed into a field re-

definition

Φ(α) → U(α)Φ(α), Γ(α) → U(α)Γ(α). (5.5)

– 8 –
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This allows us to eliminate
∑

α(n2
α − 1) parameters from the Ei. In addition, a change of

basis on the Σa may be used to eliminate (n− d)2 degrees of freedom in the Ei. Thus, we

find that there should be

NE = (n − d − 1)
∑

α

n2
α +

∑

α

1 − (n − d)2 (5.6)

parameters that cannot be absorbed into field re-definitions. When the linear model is in

the smooth geometric phase, we expect these to correspond to deformations of the tangent

bundle.

6. Compact, toric examples

6.1 (0, 2) deformations of P
1 × P

1

The linear model for this theory has n = 4, n − d = 2, with charges

Q =

(
1 1 0 0

0 0 1 1

)
. (6.1)

The (2, 2) locus is a GLSM for target-space X = P
1 × P

1. The (0, 2) deformations are

described by the matrices M(1) and M(2), mixing the {φ1, φ2}, and {φ3, φ4}, respectively.

Taking the redundancies described above into account, we expect NE = 6 deformations.

This simplest example of a compact toric GLSM with (0, 2) deformations was consid-

ered in [9] and later studied in [14]. Recently, Guffin and Katz computed the two-point and

four-point functions in this theory, taking into account all the bundle deformations [15]. A

computation of H1(X,End TX) shows that there are six (0, 2) deformations of this theory,

in agreement with the count above. We will parametrize the (0, 2) deformations in the

same fashion as in [15]. Introducing six complex parameters ǫ1, ǫ2, ǫ3, γ1, γ2, γ3, we take

E1 = i
√

2
{
Σ1Φ

1 + Σ2(ǫ1Φ
1 + ǫ2Φ

2)
}

,

E2 = i
√

2
{
Σ1Φ

2 + ǫ3Σ2Φ
1
}

,

E3 = i
√

2
{
Σ2Φ

3 + Σ1(γ1Φ
3 + γ2Φ

4)
}

,

E4 = i
√

2
{
Σ2Φ

4 + γ3Σ1Φ
3
}

. (6.2)

The M(α) matrices take the form

M(1) =

(
σ1 + ǫ1σ2 ǫ2σ2

ǫ3σ2 σ1

)
, M(2) =

(
γ1σ1 + σ2 γ2σ1

γ3σ1 σ2

)
. (6.3)

From these we read off the deformed quantum cohomology relations,

σ2
1 + ǫ1σ1σ2 − ǫ2ǫ3σ

2
2 = q1,

σ2
2 + γ1σ1σ2 − γ2γ3σ

2
1 = q2, (6.4)

in perfect agreement with [15].

– 9 –
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To compute correlators it is convenient to introduce the ratio z = σ2/σ1. The σ

equations of motion may be re-written as write

σ2
1 =

q1

s(z)
, (6.5)

with

s(z) = 1 + ǫ1z − ǫ2ǫ3z
2, (6.6)

and

P (z) = q2 detM(1)(1, z) − q1 detM(2)(1, z) = 0. (6.7)

Let

H(σ1, σ2) = det J̃a,b detM(1) det M(2) (6.8)

denote the measure factor. It is easy to see that H(σ1, σ2) = σ2
1H(1, z). Plugging these

expressions into our general formula, we find that the non-zero correlators are given by

〈σa
1σ2m−a

2 〉 = 2qm−1
1

∑

z|P (z)=0

z2m−a

s(z)m−1H(1, z)
. (6.9)

To get explicit expressions we may use any number of simple methods — for example the

couple of lines of Maple code given in the appendix. We find

〈σ2
1〉 =

1

D
[ǫ1 + ǫ2ǫ3γ1] ,

〈σ1σ2〉 =
1

D
[ǫ2ǫ3γ2γ3 − 1] ,

〈σ2
2〉 =

1

D
[γ1 + ǫ1γ2γ3] , (6.10)

with

D = (ǫ1 + ǫ2ǫ3γ1)(γ1 + ǫ1γ2γ3) − (ǫ2ǫ3γ2γ3 − 1)2. (6.11)

These correlators agree with the results of [15].

There is a nice interpretation of the q-independent singularity D = 0. In the Higgs

phase, q1,2 → 0, the σ fields are massive for generic values of the ǫ, γ parameters, while

the φ fields parametrize (up to gauge equivalence) a toric variety V . The singularity at

D = 0 corresponds to some σ field becoming light at some point in V . This may be seen

by analyzing the |σ|2|φ|2 term in the bosonic potential. In this example the condition for

a massless σ is the simultaneous vanishing of detM(1) and det M(2) for some non-zero σ.

Solving this condition leads to D = 0. Since the D = 0 singularity is q-independent, there

should be a complementary interpretation in the Coulomb phase. Indeed, one can show

that the singularity corresponds to a φ field becoming massless. In either case, we see that

in contrast to the familiar case of the (2, 2) locus, the (0, 2) theories can exhibit mixed

Higgs-Coulomb phases.
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6.2 Resolved P
4
1,1,2,2,2

We now consider another compact toric variety with two Kähler parameters. This is the

resolved weighted projective space P
4
1,1,2,2,2. The example is well-known from studies of

Calabi-Yau hypersurfaces with h1,1 = 2 [19, 1]. The GLSM has n = 6 and n − d = 2 with

charge assignments

Q =

(
0 0 1 1 1 1

1 1 0 0 0 −2

)
. (6.12)

Although this is a different toric variety from P
1×P

1, the massive Coulomb analysis will not

be much harder. The counting argument given above implies that there should be NE = 13

deformations. Although there is no obstruction to turning on all 13 deformations, to keep

the resulting expressions simple we will only turn on three deformations that mix the Φ1,Φ2

fields:

E1 = i
√

2
{
Σ2Φ

1 + Σ1(ǫ1Φ
1 + ǫ2Φ

2)
}

,

E2 = i
√

2
{
Σ2Φ

2 + Σ1ǫ3Φ
1
}

,

E3,4,5 = i
√

2Σ1Φ
3,4,5,

E6 = i
√

2
{
Σ1Φ

6 − 2Σ2Φ
6
}

, (6.13)

The M(α) matrices take the form

M(1) =

(
σ2 + ǫ1σ1 ǫ2σ1

ǫ3σ1 σ2

)
, M(2) = diag(σ1, σ1, σ1),

M(3) = σ1 − 2σ2. (6.14)

Proceeding just as in the example of P
1 × P

1, we find

J̃1 = log

[
detM2 det M3

q1

]
, J̃2 = log

[
det M1 det M−2

3

q2

]
, (6.15)

which lead to the deformed quantum cohomology relations

σ3
1(σ1 − 2σ2) = q1,

σ2
2 + ǫ1σ1σ2 − ǫ2ǫ3σ

2
1 = q2(σ1 − 2σ2)

2. (6.16)

We may write these equations in terms of σ1 and the ratio z = σ2/σ1:

σ4
1 =

q1

(1 − 2z)
,

P (z) = z2 + ǫ1z − ǫ2ǫ3 − q2(1 − 2z)2. (6.17)

Plugging these expressions into the formula for the correlators, we find that the non-zero

amplitudes are given by6

〈σa
1σ4m−a

2 〉 = 4qm−1
1

∑

z|P (z)=0

z4m−a

(1 − 2z)m−1H(1, z)
, (6.18)

6The selection rule 〈σa
1σb

2〉 = 0 unless a + b = 0 mod 4 is a simple consequence of the anomalous

R-symmetry.
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with the measure factor

H(1, z) = 4(ǫ1 − 4ǫ2ǫ3 + 2(1 + ǫ1)z). (6.19)

This form is amenable to computation. For example, we easily compute

〈σ4
1〉 =

2

D1
,

〈σ3
1σ2〉 =

1

D1
,

〈σ2
1σ

2
2〉 =

ǫ1 − 2ǫ2ǫ3 + 2q2

D1D2
,

〈σ1σ
3
2〉 =

ǫ2
1 + ǫ2ǫ3(1 − 2ǫ1) + (6ǫ1 − 12ǫ2ǫ3 + 1)q2 + 4q2

2

D1D2
2

, (6.20)

where

D1 = 1 + 2ǫ1 − 4ǫ2ǫ3,

D2 = 4q2 − 1. (6.21)

The singularity at D2 = 0 is the familiar singularity due to a quantum Coulomb branch,

while the singularity at D1 = 0 corresponds to a bundle degeneration that is visible even

in the large radius limit. As discussed in the previous example, this singularity has an

interpretation as some fields becoming light. One can perform the same analysis as above,

taking care to correctly account for the charges Qa
i , and show that D1 = 0 corresponds to

a mixed Coulomb-Higgs phase. The expressions clearly show that the bundle deformations

and Kähler parameters should be treated democratically.

7. A compact conformal example

There is a simple way to transform the previous example into a linear model that is expected

to flow to a non-trivial SCFT in the IR. We add new matter multiplets (Φ0,Γ0) and take

the charges to be

Q =

(
−4 0 0 1 1 1 1

0 1 1 0 0 0 −2

)
. (7.1)

This GLSM is no longer compact, but we can make it compact by introducing a potential

for the matter multiplets. For example, on the (2, 2) locus we may take Ji = ∂W/∂Φi, with

W = Φ0P (Φ1, . . . ,Φ5), P = (Φ8
1 + Φ8

2)Φ
4
6 + Φ4

3 + Φ4
4 + Φ4

5. (7.2)

It is a simple matter to verify that when r1,2 ≫ 0, the low energy theory is a NLSM on the

target-space described by the smooth hypersurface P = 0 in the resolved projective space

P
4
1,1,2,2,2. The A-twist of this (2, 2) theory was studied in detail in [1], and we will begin

by summarizing the results.
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7.1 A review of (2, 2) results

The first important observation is that this model does not possess the massive Coulomb

vacua that we have been discussing above.7 In particular, the theory has no non-geometric

phase, so that our techniques for computing correlators are not immediately applicable.

However, the effective twisted superpotential is still a useful tool. For instance, it may be

used to find the singular locus of the A-model — i.e. the subvariety in the Kähler moduli

space where the SCFT is singular and correlators diverge. In the example at hand, the

twisted superpotential leads to the equations

σ3
1(σ1 − 2σ2) = q1(−4σ1)

4,

σ2
2 = q2(σ1 − 2σ2)

2. (7.3)

These equations are invariant under rescaling σ1, σ2 by a constant, so that for generic q1, q2

there is no solution, and hence the model has no non-geometric phase. However, at special

values of q1, q2 there is a massless σ-direction in field space, leading to a singularity in the

low energy theory. This singular locus is determined by computing the resultant of the σ

equations of motion. The result is

(1 − 28q1)
2 − 218q2

1q2 = 0. (7.4)

As explained in [1], this computation only gives the principal component of the singular

locus. Additional components correspond to loci where some of the gauge groups remain

Higgsed, while others are in the Coulomb phase. In this example, there is one additional

component given by q2 = 1/4.

We mentioned above that since the theory lacks a non-geometric phase, we cannot

directly apply our Coulomb branch techniques to compute the correlators. Nevertheless,

there exists a way to relate the computations in this GLSM with a non-trivial superpotential

for the matter fields to computations in the toric GLSM for the ambient variety. This is

given by the quantum restriction formula derived in [1]:

〈〈σa
1σb

2〉〉 = 〈σa
1σb

2

−K

1 − K
〉, (7.5)

where 〈〈· · ·〉〉 denotes correlators on the hypersurface, and

−K =
∑

i>0

Qa
i σa = 4σ1 (7.6)

is the operator corresponding to the anti-canonical class of the hypersurface. In a sense,

it should not be a surprise that such an expression should exist: the A-model is invariant

under small changes of the coefficients in the chiral superpotential, so that it is reasonable

that the correlators would only depend on coarse data like the anti-canonical class of the

surface. What is perhaps surprising is the elegant form that the relation takes. Given

7On the (2, 2) locus this is a consequence of the non-anomalous R-symmetry — the famous condition
P

i
Qa

i = 0 for all a.
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this relation, we may use the Coulomb branch techniques in the GLSM for the ambient

variety to compute correlators in the GLSM corresponding to the Calabi-Yau three-fold [4].

This is a significant simplification, as the quantum restriction formula typically requires

the evaluation of an infinite number of correlators in the ambient GLSM.

7.2 (0, 2) deformations

How do we expect these results to change off the (2, 2) locus? First, since the Ji are non-

zero, there is a non-trivial requirement for (0, 2) SUSY:
∑

i EiJi = 0. Deformations of the

Ei will, in general, need to be accompanied by deformations of the Ji. In the case of the

ǫ1,2,3 deformations considered above, it is sufficient to deform J0:

∆J0 = 2(ǫ1Φ
8
1 + ǫ2Φ

7
1Φ2 + ǫ3Φ1Φ

7
2)Φ

4
6. (7.7)

The general arguments of [6 – 8] suggest that these deformations should correspond to

marginal deformations of the (0, 2) SCFT.

We still expect the analysis of the effective potential for the Σa,Υa to hold. After all,

when the σa have large VeVs, we expect the Ji couplings to be unimportant. Using our

formula for the potential, we arrive at the σ equations of motion:

σ3
1(σ1 − 2σ2) = q1(−4σ1)

4,

detM(1) = q2(σ1 − 2σ2)
2. (7.8)

These are again homogeneous in the σa, so that the common solutions exist only when

Dǫ = (1 − 28q1)
2 − 218q2

1q2 + 2ǫ1(1 − 28q1) − 4ǫ2ǫ3 = 0. (7.9)

This is the (0, 2) deformation of the principal component of the singular locus described

above. In particular, we see that even in the q1, q2 → 0 limit it is possible to get singularities

by degenerating the bundle structure. While not surprising in general, it is gratifying to

have such a concrete realization of this phenomenon. There should be no difficulty in

generalizing the analysis to find other components of the singular locus. In the example at

hand it is easy to see that the q2 = 1/4 component remains undeformed.

The generalization of the quantum restriction formula is more subtle. In the A-model

there was a simple reason for the decoupling of the matter superpotential: it corresponded

to QT -exact deformations of the topological theory. In the (0, 2) half-twisted theory this is

not so clear. After all, the F-I terms as well as the Ji are just terms in a (0, 2) superpotential,

and there does not seem to be an obvious reason that the half-twisted correlators of the σa

should not depend on the coefficients in the Ji. However, there may well exist a modification

of the Morrison-Plesser quantum restriction formula that will compute the dependence on

all the moduli. We plan to return to finding a suitable modification in future work. In

what follows, we will content ourselves with presenting some evidence for such a formula.

To test our expectations of quantum restirction, let us naively apply the usual

Morrison-Plesser formula to the (0, 2) correlators. The change in the J0 simply made
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a small deformation in the hypersurface, so the anti-canonical class certainly remains un-

changed. Inserting −K = 4σ1, we find

〈〈σ3−a
1 σa

2〉〉 = 〈4σ
4−a
1 σa

2

1 − 44σ4
1

〉 =
∑

z|P (z)

G(z), (7.10)

where

G(z) =
16za(1 − 2z)

H(1, z)(1 − 2z − 44q1)
. (7.11)

The sum is easy to evaluate by writing it as a contour integral around the zeroes of P , and

then pulling the contour off onto the other poles. We find

〈〈σ3−a
1 σa

2〉〉 = −
{

Res
z=

1−44q1
2

+ Res
z=

4ǫ2ǫ3−ǫ1
2(1+ǫ1)

+ Resz=∞

}
G(z)P ′(z)

P (z)
. (7.12)

Using this expression, the three-point functions are given by

〈〈σ3
1〉〉 =

8

Dǫ
,

〈〈σ2
1σ2〉〉 =

4(1 − 28q1)

Dǫ

,

〈〈σ1σ
2
2〉〉 =

4(210q1q2 − 2q2 + 28ǫ1q1 + 2ǫ2ǫ3 − ǫ1)

(1 − 4q2)Dǫ
,

〈〈σ3
2〉〉 = 4

[
q2(1 + 4q2 − 28q1 − 3072q1q2) + ǫ2

1(1 − 28q1)

+ 2ǫ1(−210q1q2 + 3q2 − ǫ2ǫ3)

+ǫ2ǫ3(−28q1 + 210q2q1 + 1 − 12q2)
]
/(1 − 4q2)

2Dǫ. (7.13)

Remarkably, the correlators in the ambient GLSM sum up to produce the singularities

expected from the Coulomb branch analysis of the model with hypersurface! We take this

to be a good indication that the dependence on the Ji parameters may well be simple

enough to be captured by a suitable modification of the quantum restriction formula.

8. Conclusions

We have developed a simple method to compute an interesting set of correlators in half-

twisted compact, toric sigma models. These correlators should be interpretable as the (0, 2)

generalization of genus zero Gromov-Witten invariants described in [14]. A by-product of

our analysis was a simple derivation of the deformed quantum cohomology relations in

these theories. We have applied our results to several examples, and it is fairly clear that

they should apply to more intricate models without excessive computational burden.

Clearly, the most interesting extensions of this work lie in applications to theories of

the sort considered in our last example: (0, 2) deformations of compact linear models that

flow to non-trivial SCFTs in the IR. Heartened by our results for the compact toric theories,

we would like to study the modification to the quantum restriction formula in more detail.

Once this aspects of the problem is well understood, we will be in a much better position to

develop (0, 2) generalizations of special geometry and mirror symmetry in these deformed

theories. Another exciting direction would be to attempt to apply these methods to (0, 2)

theories without a (2, 2) locus. We hope to report on these matters in the near future.
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A. A Maple routine to compute correlators

Below we present a simple Maple code that computes correlators in the P
1×P

1 model. We

hope the simplicity of this routine makes it clear that our results lead to correlators with

a minimum of computational effort. Lines beginning with # are comments.

with(LinearAlgebra):

#The deformations. s[1], s[2] are the sigma fields.

#To compare to Guffin and Katz, set a[4]=b[4]=0

#and remaining a[i] = epsilon[i], b[i] = gamma[i].

M[1] := Matrix([ [s[1]+a[1]*s[2], a[2]*s[2] ],

[ a[3]*s[2] , s[1]+a[4]*s[2] ]

]);

M[2] := Matrix([ [s[2]+b[1]*s[1], b[2]*s[1] ],

[ b[3]*s[1] , s[2]+b[4]*s[1] ]

]);

DM[1]:= Determinant(M[1]);

DM[2]:= Determinant(M[2]);

#The J’s

J[1] := log (DM[1]/q[1]);

J[2] := log (DM[2]/q[2]);

#The second derivatives of J

JJ := Matrix(2,2):

JJ[1,1] := diff( J[1], s[1]);

JJ[1,2] := diff( J[1], s[2]);

JJ[2,1] := diff( J[2], s[1]);

JJ[2,2] := diff( J[2], s[2]);

DJJ := Determinant(JJ);

#the combined measure.

– 16 –



J
H
E
P
0
4
(
2
0
0
8
)
0
7
1

H := simplify(DJJ*DM[1]*DM[2]);

#substitution of s[2] = z s[1].

HS := collect(subs(s[1]=1,s[2]=z, H),z);

S := collect(subs(s[1]=1,s[2]=z,DM[1]),z);

#equation for z

P := simplify(subs(s[1]=1,s[2]=Z, DM[1]*q[2]-DM[2]*q[1]));

#Non-Zero Correlators have a+b = 2m.

#the factor of 2 follows from summing over

#solutions for s[1]:

C := (a, m) ->

simplify( 2*q[1]^(m-1)

*sum(z^(2*m-a)*S^(1-m)*HS^(-1),

z=RootOf(P,Z)

)

);
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